198 research outputs found

    Automatische Performanzoptimierung paralleler Architekturen

    Get PDF
    Die Parallelisierung von Programmen und deren Optimierung stellen Software-Entwickler vor große Herausforderungen. Diese Arbeit befasst sich daher mit Problemstellungen im Bereich der automatischen Performanzoptimierung (Auto-Tuning) paralleler Architekturen. Hierzu wird ein Verfahren für den Entwurf paralleler optimierbarer Architekturen vorgestellt; das Konzept eines suchbasierten Auto-Tuners rundet die Arbeit ab. Die Evaluationsergebnisse erweisen sich als äußerst vielversprechend

    Revealing the Ion Chemistry Occurring in High Kinetic Energy-Ion Mobility Spectrometry: A Proof of Principle Study

    Get PDF
    Here, we present proof of principle studies to demonstrate how the product ions associated with the ion mobility peaks obtained from a High Kinetic Energy-Ion Mobility Spectrometer (HiKE-IMS) measurement of a volatile can be identified using a Proton Transfer Reaction/Selective Reagent Ion-Time-of-Flight-Mass Spectrometer (PTR/SRI-ToF-MS) when operating both instruments at the same reduced electric field value and similar humidities. This identification of product ions improves our understanding of the ion chemistry occurring in the ion source region of a HiKE-IMS. The combination of the two analytical techniques is needed, because in the HiKE-IMS three reagent ions (NO+, H3O+ and O2+•) are present at the same time in high concentrations in the reaction region of the instrument for reduced electric fields of 100 Td and above. This means that even with a mass spectrometer coupled to the HiKE-IMS, the assignment of the product ions to a given reagent ion to a high level of confidence can be challenging. In this paper, we demonstrate an alternative approach using PTR/SRI-ToF-MS that allows separate investigations of the reactions of the reagent ions NO+, H3O+ and O2+•. In this study, we apply this approach to four nitrile containing organic compounds, namely acetonitrile, 2-furonitrile, benzonitrile and acrylonitrile. Both the HiKE-IMS and the PTR/SRI-ToF-MS instruments were operated at a commonly used reduced electric field strength of 120 Td and with gas flows at the same humidities

    High Kinetic Energy Ion Mobility Spectrometry- Mass Spectrometry investigations of four inhalation anaesthetics : isoflurane, enflurane, sevoflurane and desflurane

    Get PDF
    Here we report the first High Kinetic Energy-Ion Mobility Spectrometry-Mass Spectrometric (HiKE-IMSMS) investigations involving four fluranes; isoflurane, enflurane, sevoflurane and desflurane. Unlike standard (atmospheric pressure) IMS, HiKEIMS can detect these compounds in positive ion mode. This is because its low-pressure environment (similar to 14 mbar) and the associated short ion drift times in the HiKEIMS ensure the reagent ions O-2+(center dot) and H3O+ are present in the reaction region, and these can react with the fluranes by dissociative charge and proton transfer, respectively. However, their ion intensities are very dependent on the value of the reduced electric field (E/N) applied and the humidity of the air in the reaction region of the HiKE-IMS. In this paper we explore the potential use of HiKE-IMS for air quality control and breath analysis of fluranes. To help in the interpretation of the ion mobility spectra, and hence the ion-flurane chemistry occurring in reaction region, a HiKE-IMS was coupled to a Time-of-Flight Mass Spectrometer so that the m/z values of both the reagent and product ions that are contained within the various ion mobility peaks observed could be identified with a high level of confidence. The dependencies of the intensities of these ions as functions of E/N (30-115 Td) and humidity in the reaction region are reported. A number of product ions have been observed only under low humidity conditions (H2O volume-mixing ratio 100 ppm(v)), including CHF(2+)and CHFCl (+) for isoflurane and enflurane, CHF2(+), CF3(+) and C3H2F5O+ for desflurane, and CH3O+, CHF2+, C3H3F4O+, C4H3F6O+ and C4H3F6O+(H2O) for sevoflurane. It is interesting to note that CH3O+, CHF2+, CHFCl+ and CF3+ have shorter drift times than that measured for O-2(+center dot) This is explained by resonant charge transfer reaction processes occurring in the drift region: O-2(+center dot) + O-2 ? O-2+(center dot).O O-2 + O-2 +(center dot) (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Atune-IL: An Instrumentation Language for Auto-tuning Parallel Applications

    Get PDF
    Automatic performance tuning (auto-tuning) has been used in parallel numerical applications for adapting per-formance-relevant parameters. We extend auto-tuning to general-purpose parallel applications on multicores. This paper concentrates on Atune-IL, an instrumentation language for specifying a wide range of tunable parame-ters for a generic auto-tuner. Tunable parameters include the number of threads and other size parameters, but also choice of algorithms, numbers of pipeline stages, etc. A case study of Atune-IL’s usage in a real-world application with 13 parameters and over 24 million possible value combinations is discussed. With Atune-IL, the search space was reduced to 1,600 combinations, and the lines of code needed for instrumentation were reduced from more than 700 to 25.

    High kinetic energy-ion mobility spectrometry-mass spectrometry investigations of several volatiles and their fully deuterated analogues

    Get PDF
    The first High Kinetic Energy-Ion Mobility Spectrometry-Mass Spectrometry (HiKE-IMS-MS) studies involving six volatiles (acetone, acetonitrile, methanol, ethanol, 2-propanol, and 1-butanol) and their fully deuterated analogues are reported. The goal is to further our understanding of the ion-molecule chemistry occurring in the HiKE-IMS. This is needed for its full analytical potential to be reached. Product ions are identified as a function of the reduced electric field (30-115 Td) and the influence of sample air humidity in the reaction region on deuterium/hydrogen (D/H) exchange reactions is discussed. Reagent ions include H3O+(H2O)(m), (n = 0, 1, 2 or 3), NO+(H2O)(n) (m = 0 or 1) and O-2(+center dot). Reactions with H3O+(H2O)(m), lead to protonated monomers (through either proton transfer or ligand switching). Reactions with NO+ involve association with acetone and acetonitrile, hydride anion abstraction from ethanol, 2-propanol, and 1-butanol, and hydroxide abstraction from 2-propanol and 1-butanol. With the exception of acetonitrile, O-2(+center dot) predominantly reacts with the volatiles via dissociative charge transfer. A number of sequential secondary ion-volatile processes occur leading to the formation of dimer and trimer-containing ion species, whose intensities depend on a volatile's concentration and the reduced electric field in the reaction region. Deuterium/hydrogen (D/H) exchange does not occur for product ions from acetone-d(6) and acetonitrile-d(3), owing to their inert methyl functional groups. For the deuterated alcohols, rapid D/H-exchange reaction at the hydroxy group is observed, the amount of which increased with the increasing humidity of the sample air and/or lowering of the reduced electric field.Peer reviewe

    Ion Mobility Shift of Isotopologues in a High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) at Elevated Effective Temperatures

    Get PDF
    Ion mobility spectrometers (IMS) separate ions mainly by ion–neutral collision cross section and to a lesser extent by ion mass and effective temperature. When investigating isotopologues, the difference in collision cross section can be assumed negligible. Since the mobility shift of isotopologues is thus mainly caused by their difference in mass and effective temperature, the investigation of isotopologues can provide important insights into the theory of ion mobility. However, in classical IMS operated at ambient pressure, cluster formation with neutral molecules occurs, which significantly influences the mobility shift of isotopologues and thus makes a sound investigation of the effect of ion mass and effective temperature on the ion mobility difficult. In this work, the relative ion mobility of several organic compounds and their 13C-labeled isotopologues is studied in a High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) at high reduced electric fields up to 120 Td, which allows the investigation of nonclustered ion species and thus enables a sound investigation of the mobility shift of isotopologues. The results show that the measured relative ion mobilities of isotopologues having the same effective temperature and, thus, their ion mass dominating the relative ion mobility agree well with theoretical relative ion mobilities predicted by the theory of ion mobility
    • …
    corecore